Articles which describe the GWL method
The GWL code code has been implemented during several years first for GW calculations and then
for BSE ones.
GW
 P. Umari, G. Stenuit, S. Baroni,'“Optimal representation of the polarization propagator for largescale GW calculations' Phys. Rev. B 79 (2009) 201104(R)
 P. Umari, G. Stenuit, S. Baroni, 'GW quasiparticle spectra from occupied states only' Phys. Rev. B 81 (2010) 115104
 P. Umari, ‘ A Fully Linear Response G0W0 Method That Scales Linearly up to Tens of Thousands of Cores ‘ J. Phys. Chem. A 126, 3384 (2022).
 P. Umari, ‘Inclusion of infrared dielectric screening in the GW method from polaron energies to charge mobilities’ NPJ Comput. Mater. 8, 141 (2022).
BSE

M. Marsili, E. Mosconi, F. De Angelis, P. Umari Largescale GW BSE calculations with N3 scaling: Excitonic effects in dye sensitized solar cells.
Phys. Rev. B 95, 075415 (2017).
 J. D. Elliott, N. Colonna, M. Marsili, N. Marzari, P. Umari, “Koopmans Meets Bethe–Salpeter: Excitonic Optical Spectra without GW”,
J. Chem. Theor. Comp. , 15, 3710 (2019).

G. Prandini, M.Galante,N. Marzari, P. Umari. “SIMPLE code: Optical properties with optimal basis functions”
Computer Phys. Comm. , 240, 106 (2019).
 JD Elliott, E Mosconi, F De Angelis, A Ambrosetti, P Umari,
‘Real Space–Real Time Evolution of Excitonic States Based on the BetheSalpeter Equation Method’,
J. Phys. Chem. Lett. 12, 72617269 (2021).
 L. Adamska and P. Umari ‘BetheSalpeter equation approach with electronphonon coupling for exciton binding energies‘, Phys. Rev. B 103, 075201 (2021).
