Articles which describe the GWL method

The GWL code code has been implemented during several years first for GW calculations and then for BSE ones.


  • P. Umari, G. Stenuit, S. Baroni,'“Optimal representation of the polarization propagator for large-scale GW calculations' Phys. Rev. B 79 (2009) 201104(R)
  • P. Umari, G. Stenuit, S. Baroni, 'GW quasiparticle spectra from occupied states only' Phys. Rev. B 81 (2010) 115104
  • P. Umari, ‘ A Fully Linear Response G0W0 Method That Scales Linearly up to Tens of Thousands of Cores ‘ J. Phys. Chem. A 126, 3384 (2022).
  • P. Umari, ‘Inclusion of infrared dielectric screening in the GW method from polaron energies to charge mobilities’ NPJ Comput. Mater. 8, 141 (2022).


  • M. Marsili, E. Mosconi, F. De Angelis, P. Umari Large-scale GW -BSE calculations with N3 scaling: Exci-tonic effects in dye- sensitized solar cells. Phys. Rev. B 95, 075415 (2017).
  • J. D. Elliott, N. Colonna, M. Marsili, N. Marzari, P. Umari, “Koopmans Meets Bethe–Salpeter: Excitonic Optical Spectra without GW”, J. Chem. Theor. Comp. , 15, 3710 (2019).
  • G. Prandini, M.Galante,N. Marzari, P. Umari. “SIMPLE code: Optical properties with optimal basis func-tions” Computer Phys. Comm. , 240, 106 (2019).
  • JD Elliott, E Mosconi, F De Angelis, A Ambrosetti, P Umari, ‘Real Space–Real Time Evolution of Excitonic States Based on the Bethe-Salpeter Equation Method’, J. Phys. Chem. Lett. 12, 7261-7269 (2021).
  • L. Adamska and P. Umari ‘Bethe-Salpeter equation approach with electron-phonon coupling for exciton binding energies‘, Phys. Rev. B 103, 075201 (2021).