
GWL Manual

September 30, 2013

1 What is GWL

GWL is a code for performing first-principles GW calculations according, at
the moment, to the G0W0 approximation[1]. It is based on plane-waves for
representing wave-functions and on pseudopotentials for describing the interac-
tions between valence and core electrons. At the moment, only norm-conserving
pseudo-potentials are supported.

GWL is distributed, along the GNU-GPL license, as a package of the Quantum-
Espresso (www.quantum-espresso.org) suite (QE) of ab-initio codes. GWL can
be downloaded with the development version of the Quantum-Espresso (www.qe-
forge.org) or through the GWL website (www.gwl-code.org).

GWL requires the use of the pw.x code of the QE and requires the installation
of the ph.x package.

GWL avoids in the GW formalism any explicit sum over empty Kohn-Sham
states yielding in this way converged results[2]. Moreover, for specifying the
basis set used for representing polarizability operators, two choices are imple-
mented: either the use of a conventional plane-waves basis or the use of an
optimal basis. As this is smaller, a significant speed-up can be achieved, espe-
cially for non-homogenous systems, without loosing accuracy[2, 3]. With GWL
calculations are performed on the imaginary energy axis. Then, the expectation
values of the self-energy operators are analytically continued on the real energy
axis through multipole expansion. In this way, the plasmon-pole approximation
is avoided.

GWL supports hybrid (exact-exchange) exchange and correlation function-
als.

As the target systems are (large) non-homogeneous systems, only Γ-point
sampling of the Brillouin’s zone has been implemented. In the case of isolated
systems, a truncated Coulomb interaction can be used. In the more general
case of extended systems, head and wings of the symmetric dielectric matrix are
calculated. Only for this calculation general k-point sampling of the Brillouin’s
zone is supported together with a treatment of the point symmetries of the
primitive crystal cell.

In the development version of GWL other features have been already imple-
mented and will be released soon after having completed the test phase. These

1



include the use of contour integration instead of analytic continuation, a scheme
for the approximate treatment of semicore orbitals[4], evaluation of off-diagonal
elements of the self-energy operators, some levels of self-consistency.

2 How to install GWL

The GWL code can be download with the development version of the Quantum-
Espresso through svn from the www.qe-forge.org website. It is easily installed as
the other programs of the package.The GWL programs will be installed in the
subdirectory GWW of the main Quantum-Espresso directory. Just digit “make
gwl” in the main Quantum-Espresso directory.

The GWL code is written in fortran 90 and is parallelized using the MPI
protocol. It uses intensively BLAS (mainly DGEMM) and LAPACK calls so it
is strongly suggested to make use of external proprietary libraries appropriate
for the chose computer architecture. Such libraries are the same used by the
Quantum-Espresso as the same make.sys file is used. Note that using internal
BLAS libraries, compiled by the user, can lead to a strong deterioration of the
performances.

As BLAS and LAPACK libraries are also available in versions supporting
the OPENMP parallelization protocol, we suggest to compile the GWL (and
the QE) package enabling the mixed MPI/OPENMP parallelization. With this
choice, we have reach good, almost linear, scaling up to 2048 computing cores.

3 How to run a GW calculation with GWL

A GW calculation will require at least three or four different runs. The sim-
plest case is when a truncated coulomb interaction is used. First, a DFT self-
consistent calculation with the pw.x code must be performed. In this case a
k -point sampling of the Brillouin’s zone can be used. Second, a DFT non self-
consistent calculation must be run specifying the total number of Kohn-Sham
states for which we want to calculate the GW quasi-particle energies. In this case
Γ-only sampling is required in order to impose the KS wave-functions to be real.
In the third step, the pw4gww.x code of the GWL package is used in order to
obtain the polarizability basis, the Lanczos’chain terms and all the other quan-
tities needed by the GW calculation. This is then performed using the gww.x
code of the GWL package which will required to define a grid on the imaginary
frequency axis and on the imaginary time axis. The gww.x code will calculate
the expectation values of the correlation part of the self-energy operator and
write them on files, named re_on_imXXXXX and im_on_imXXXXX for the
real and imaginary part, respectively (with XXXXX the number of the corre-
sponding Kohn-Sham state), which can be plotted. The gww.x code performs
also fits of such lines with a multipole expression in order to analytically continue
the expectation values on the real frequency axis for obtaining the quasi-particle
energies. Such fits can be also performed again later using the gww_fit.x code.

2



This code just requires the re_on_imXXXXX and im_on_imXXXXX files to-
gether with the DFT eigenenergies and the exchange energies. Therefore, it
needs few computational resources (e.g. one laptop).

It should be noted that the non-self consistent DFT calculation with the
pw.x code could be avoided if we specify all the KS states of interest in the scf
DFT calculation and if we use for this Γ-only sampling of the Brillouin’s zone.

When, we want to perform a calculation on an extended system a slightly
more involved formalism must be used. This requires the calculation of the head
(element G = 0,G = 0) and wings (elements G = 0,G �= 0) of the symmetric
dielectric matrix. The head.x code of the GWL package fulfills this purpose.
It requires k -point sampling of the Brillouin’s zone and can take advantage of
the point symmetries of the model structure. We must use the same grid on
imaginary frequency that will be then used in the gww.x code. The compu-
tational cost of this calculation is smaller than those with the pw4gww.x and
gww.x codes.

The pw4gww.x and gww.x codes offer several possibility of restart. In partic-
ular, the self_energies can be calculated by groups of KS states re-running first
the pw4gww.x code and then the gww.x code. In this case, we have introduced
an option ( called l_big_system in both cases) which permits to have higher
flexibility in the choice of the parameters involved in such restart (e.g. length
of Lanczos chains).

4 pw4gww.x

The pw4gww.x code prepares all the required data (such as Wannier’s transform
matrices, Lanczos’s chains, exchange terms,..) for the GW calculation that will
be performed with the gww.x code. It uses the same environment than the
Quantum-Espresso and its is parallelized in the same way on the plane-waves.
It also uses a good number of subroutines from the QE and in particular from
the pw.x code. At the moment parallelizations other than on plane-waves are
not supported.

The code is structured in this way: the main routine pw4gww.f90 reads
the input namelist and then calls the subroutine produce_wannier_gamma.f90.
This calls all the subroutines which calculate all the required data for the gww.x
code. These are divided in several point and the input parameter restart_gww
determines the starting point, from 0 to 4 . For the moment no ending point can
be specify. In point 2, the Lanczos chains are calculated for the polarizability
and the self-energy. This point is further divided in 4 sub-points, from 0 to 3.
The starting one is specified by the input parameter lanczos_restart.

These are the tasks performed by each point, of produce_wannier_gamma.f90,
given by the corresponding restart_gww number:

• restart_gww=0 : calculate Wannier’s transform, expectation values of
DFT exchange and correlation potential

• restart_gww=1 : calculate the polarizability basis

3



• restart_gww=2 : calculate the Lanczos chains

• restart_gww=4: calculate the projections of the wings of the symmet-
ric dielectric matrix on the polarizability basis vectors (if required) and
calculate the expectation values of the bare exchange operator.

The point 2 is divided in 4 sub-points; the starting one can be specified by the
input option lanczos_restart :

• lanczos_restart=0 : calculate the local t vectors for the calculation of the
polarizability

• lanczos_restart=1 : calculate the global t vectors and the Lanczos chains
for the calculation of the polarizability

• lanczos_restart=2: calculate the local s vectors for the calculation of the
self-energy

• lanczos_restart=3: calculate the global s vectors and the Lanczos chains
for the calculation of the self-energy

While a calculation is proceeding, the code reports on output, after having
completed a point, the restart_gww and the lanczos_restart parameters which
could be used for restarting the calculation from that point. As the point
given by restart_gww=1 (calculation of the polarizability basis) can be quite
time-consuming, we have implemented the possibility of resuming a partially
completed calculation. This is done automatically by reading the tiny text file
XYZ.restart_fk0_status (where XYZ is the QE prefix parameter which specifies
the name of the calculation). If this cannot be found or if it starts with “-1” the
program will start from beginning. If point 1 is completed a “-1” is written in
order not to affect newer calculations. If a calculation has not been completed
and if you want to discard the data obtained you must delete this file.

The code is parallelized using the MPI protocol over the G points in the same
way as the pw.x code. Note that for small systems it would be useless to use a
large number of MPI tasks as some task would have no G points at all resulting
even in longer calculations. The pw4gww.x strongly relies on linear algebra op-
eration which are performed using the BLAS and LAPACK libraries. As usually
such libraries can efficiently take advantage of the OPENMP parallelization, a
good choice (especially for large systems) is to use a mixed MPI-OPENMP par-
allelization, distributing each MPI task over a number of OPENMP threads.
Only in the routines pola_basis_lanczos and self_basis_lanczos ,which calcu-
late the local t and s vectors, matrix diagonalization are further distributed
over a certain number of MPI tasks. We plan in a future version of the code to
develop further such strategy of MPI parallelism.

The main contribution to memory usage is due to the storage of the polar-
izability basis and in point 1 to the storage of the vectors used for calculating
the polarizability basis.

4



4.1 Input parameters

Required parameters:

prefix (character*) Title of the calculation, must be the same as that used in
pw.x .

l_truncated_coulomb (logical) if .true. truncates the coulomb interaction
at a distance R (see below), if .false. a calculation with head.x must have
been performed before calling pw4gww.x (default: .false.)

truncation_radius (real*8 ) the truncation radius R (see above) in Bohr.

pmat_type (integer) Type of basis for the polarizability matrices, at the mo-
ment the available options in the released version of the code are: 5 for a
plane-waves basis set and 4 for the optimal polarizability basis (default:
4)

pmat_cutoff (real*8 ) If pmat_type=5 it specifies the cutoff in Rydberg for
the plane-waves, if pmat_type=4 it specifies the cutoff E∗ (default: 3.d0)

numw_prod (integer ) In pmat_type=5 gives the length of the polarizability
basis

num_nbndv (integer(2) ) number of occupied states (single or double) for
each spin channel. In the case of spin unpolarized calculations only num_nbndv(1)
is required

num_nbnds (integer) Total number of DFT states for both spin channels
for which GW correction will be calculated, must be the same as the
parameter nbnd in pw.x

Optional parameters:

restart_gww (integer) restart point see above (default: 0)

restart_lanczos (integer) restart sub-point see above (default: 0)

s_pmat (real*8) threshold for the calculation of the temporary basis from
which the actual polarizability basis is obtained (default: 0.01d0)

dual_pb (real*8) defines the ratio between the cutoff used for obtaining grids
in real spaces with respect to the cutoff use for representing wave-functions
in G space. It must be � 4 . It affects the calculation of the polarizability
basis. (default: 1.d0)

dual_vt (real*8) defines the ratio between the cutoff used for obtaining grids
in real spaces with respect to the cutoff use for representing wave-functions
in G space. It must be � 4 . It affects the calculation of the t vectors.
(default: 1.d0)

5



dual_vs (real*8) defines the ratio between the cutoff used for obtaining grids
in real spaces with respect to the cutoff use for representing wave-functions
in G space. It must be � 4 . It affects the calculation of the s vectors.
(default: 1.d0)

n_pola_lanczos (integer) dimension of the local t vectors for the calculation
of the irreducible polarizability matrices (default: 400)

s_pola_lanczos (real*8) threshold for obtaining from the local t vectors the
global t vectors . Note it has dimension Bohr3 and for a given choice of the
polarizability basis parameters it scales as the volume of the simulation
cell. (default: 0.5d0).

nsteps_lanczos_pola (integer) length of Lanczos chains for the calculation
of the irreducible polarizability matrices (default: 20)

n_self_lanczos (integer) dimension of the local s vectors for the calculation
of the expectation values of the self-energy (default: 600)

s_self_lanczos (real*8) threshold for obtaining from the local s vectors the
global s vectors. (default: 1.d-12). Note for larger systems a value of
1.d-13 is more adequate

nsteps_lanczos_self (integer) length of Lanczos chains for the calculation of
the irreducible polarizability matrices (default: 40) Note values of 100 -
200 give converged results in large systems.

l_big_system (logical) in large systems can be convenient to calculate the
self-energy separately each state at one time, this corresponds to several
calculations where in each one the global s vectors will coincide with the lo-
cal one. Although obtaining the whole spectrum with this strategy, in this
way it is easier to check the convergence with respect to n_self_lanczos
and nsteps_lanczos_self (s_self_lanczos will not be use). It is also the
best choice if only few states must be calculated. (default: .false.)

s_first_state (integer) if l_big_system==.true. self_energy will be calcu-
lated only from_s_first_state till s_last_state (default: 1)

s_last_state (integer) if l_big_system==.true. self_energy will be calcu-
lated only from_s_first_state till s_last_state (default: num_nbnds)

l_verbose (logical) if .true. a much larger output file is produced. Useful for
debugging (default: .false.)

4.2 Output file

We describe the output file, which is directed on standard output, according to
the points specified by the parameter restart_gww.

6



4.2.1 Point 0

• First the parameters of the simulation cell and of the pseudopotentials are
reported as for the pw.x code.

• KS energy: I X DFT Kohn-Sham energy X in eV for the I-th state

• energies_xc : I X DFT exchange and correlation contribution in eV to
the KS energy of the I-th state

• energies_h: I X DFT Hartree contribution in eV to the KS energy of
the I-th state

• LOCALIZING WANNIER FUNCTIONS: now the unitary trans-
form for obtaining the Wannier’s functions, of the valence manifold only,
is computed

• Spread X1 X2 during successive optimization steps a quantity which is
proportional to the inverse of the spread is printed

• Center Wannier: X1 X2 X3 coordinates of the center of the i-th
Wannier’s function, only for valence states, in Bohr

4.2.2 Point 1

• Number of projected orthonormalized plane waves: I total number
of plane-waves defined by E∗ , parameter pmat_cutoff, is printed

• FK state: I the algorithm for obtaining the temporary polarizability basis
is iterative. Now the product terms relative to the I-th valence states are
computed

• FK GS J at this iteration J vectors have been added to the basis

• POLARIZABILITY eigen: I X the eigenvalues of the polarizability-
like operator defining the polarizability basis are reported in ascending
order in units of Bohr2

4.2.3 Point 2

• USE RESTART: 2 LANCZOS RESTART:0

• EIGEN T LOCAL: I 1 X for the i-th Wannier’s function (states are dis-
tributed among MPI tasks) report the n_pola_lanczos lowest eigenvalue
X of the overlaps of Pc |φµwv�

• EIGEN T LOCAL: I N_POLA_LANCZOS X for the i-th Wanier’s
function (states are distributed among MPI tasks) report the largest eigen-
value X of the overlaps of Pc |φµwv�

• USE RESTART: 2 LANCZOS_RESTART:1

7



• EIGEN GLOBAL: 1 X the global basis for the calculation of the polar-
izability is now being constructed iteratively step by step, for each state
it is reported the smallest and the largest eigenvalue, only terms with
eigenvalue larger than S_POLA_LANCZOS will be taken

• TOTAL NUMBER OF GLOBAL T VECTORS: N the final di-
mension of the basis is N

• lanczos_state: now the lanczos chains are being built , it will write this
for every MPI task

• USE RESTART: 2 LANCZOS_RESTART:2

• EIGEN S LOCAL: I 1 X for the i-th KS state (states are distributed
among MPI tasks) report the n_self_lanczos lowest eigenvalue X of the
overlaps of |(vφµ)ψi�

• EIGEN S LOCAL: I N_SELF_LANCZOS X for the i-th KS state
(states are distributed among MPI tasks) report the largest eigenvalue X
of the overlaps of |(vφµ)ψi�

• USE RESTART: 2 LANCZOS_RESTART:3

• EIGEN GLOBAL: 1 X the global basis for the calculation of the self-
energy is now being constructed iteratively step by step, for each state
it is reported the smallest and the largest eigenvalue, only terms with
eigenvalue larger than S_SELF_LANCZOS will be taken

• TOTAL NUMBER OF GLOBAL S VECTORS: N the final di-
mension of the basis is N

• lanczos_state: now the Lanczos chains are being built , it will write
this for every MPI task

4.2.4 Point 3

• note that to perform the calculation of this point the parameter lanc-
zos_restart must be different from 2 or 3

• Routine calculate_wing the projections of the polarizability basis on
the wings of the symmetric dielectric matrix are computed

• Exchange energy I IS X it reports the expectation value X of the Fock
operator for the I-th KS-state of the spin-channel IS

4.2.5 Point 4 -only in development version

• prepares the data for the semicore treatment during the calculation with
semicore states in valence, active only if l_semicore = .true.

8



4.2.6 Point 5-only in development version

• prepares the data for the semicore treatment during the calculation with-
out semicore states in valence, active only if l_semicore_read = .true.

5 gww.x

The actual GW calculation is then performed by the gww.x code. This code
reads the input from standard input in the form of a namelist which must have
the following form:

&inputgww
ggwin%name_of_parameter=its_value
/
The code requires the definition of a grid on the positive imaginary frequency

half-axis. Two possible kinds of discretization have been implemented. The
simplest choice,ggwin%grid_freq=3, is an equally spaced grid consisting of
ggwin%n grid points plus the point at zero frequency and going up to the
maximum frequency ggwin%omega which is given in Rydberg. However, it
is more convenient to use grids which are denser close in the low frequency
region. We achieve this with the choice ggwin%grid_freq=5 in this case the
final grid will contain all the ggwin%n+1 points of the equally spaced grid
up to the frequency ggwin%omega ggwin%omega plus other grid points:
for the first ggwin%second_grid_i+1 first grid points of the equally spaced
grid we add a finer equally spaced mesh in such a way that we have other
ggwin%second_grid_n points for for each half-grid step of the loose grid
around the chosen ggwin%second_grid_i+1 points. See Figure 1.

Typical Parameters for grids can be found in the example and tutorial files.
The GW calculation is composed by a series of steps: 1 to 7. With the gg-

win%starting_point we give the first step and with the option ggwin%ending_point
we give the last step to be performed. It should be noted that if the calculation
is restarted, in general, the number of MPI tasks can be changed. The only
exception is the calculation of the irreducible polarizability matrices in point
3, where a file named restart_polaw is created, if it exists and if it does not
begin with ’-1’, the same number of MPI tasks must be used if the calculation
of the polarizability matrices is restarted. As, once the polarizability matrices
are finally obtained, this file is set to ’-1’ , it must be deleted only when we want
to discard a partially completed calculation.

The code is parallelized on the total number of grid points on the imaginary
frequency positive half-axis.

The GW calculation is performed through the following series of steps:

1. initialize the Green’s function

2. calculate and write on disk, partial sums to be used in point 3

3. calculate the irreducible polarizability matrices

9



Figure 1: Grid points on the imaginary frequency axis in the gww.x code for the
equally spaced grid (3) and the augmented grid (5). In the calculations only the
grid points on the positive half-axis are considered. The points on the negative
axis are reported (dashed lines) only for reference.

4. from the irreducible polarizability calculates the screened interaction

5. from the screened interaction calculate the reducible polarizability

6. Calculate the expectation values of the self-energy operator on the imag-
inary frequency axis

7. Fit the the expectation values of the self-energy operator with a multipole
formula and calculate quasi-particle energy levels

5.1 Input parameters

Required parameters

ggwin%prefix (character*) Title of the calculation, must be the same as that
used in pw4gww.x .

ggwin%max_i (integer) total number of KS bands

ggwin%l_truncated_coulomb (logical) must be equal to the one chosen for
pw4gww.x

ggwin%omega (double) extension of frequency grid on imaginary frequency
axis (Ry)

ggwin%n (integer) number of grid steps (see previous section)

10



ggwin%grid_freq (integer) type of frequency grid (see previous section)

ggwin%omega_fit (double) extension of frequency grid on imaginary fre-
quency axis (Ry) for evaluating the self-energy

ggwin%n_grid_fit (integer) number of equally spaced grid-steps for the eval-
uation of the self-energy

ggwin%n_fit (integer) number of grid points (starting from the origin) to be
used for fitting the multipole expansion

if ggwin%grid_freq==5 we must give also

ggwin%second_grid_i (integer) number of grid steps close to the origin
which requires interpolation (see previous section)

ggwin%second_grid_n (integer) number of interpolation points (see previ-
ous section)

ggwin%i_min (integer) KS energies will be calculated from state i_min to
state i_max (only for steps 6 and 7)

ggwin%i_max (integer) KS energies will be calculated from state i_min to
state i_max (only for steps 6 and 7)

Optional parameters

ggwin%n_multipoles (integer) number of poles for multipole expansion (de-
fault: 2)

ggwin%fit_thres (double) threshold for convergence of minpack non-linear
fit (default: 1d-5)

ggwin%offset_fit (integer) it specifies the number of point on the fit grid
which will be skipped during the fit (starting from the origin). (default:
1)

ggwin%n_set_pola (integer) Number of valence states to be treated to-
gether when calculating the irreducible polarizability in point 3. It af-
fects only the performance of the code not its results. Larger n_set_pola
faster the calculation but larger the memory consumption (see next Sec-
tion).(default: 4)

ggwin%l_verbose (logical) enables more detailed output file, useful for de-
bugging (default: .false.)

ggwin%l_big_system (logical) calculates the expectation values of the self-
energy state by state using local s vectors, safer for large systems as it
is easier to check the convergence. It requires the same option in the
pw4gww.x code. (default: .false.)

11



ggwin%l_list (logical) similar to l_big_system but calculates only the states
specified by a list (default: .false.)

Optional parameters enabling features still under development or testing

ggwin%whole_s (logical) calculates also off_diagonal elements of the self-
energy operator (default: .false.)

ggwin%l_frac_occ (logical) if true enables the use of fractional occupancies
(default:.false.)

ggwin%l_semicore (logical) enables the scheme for approximate account of
semicore states (default: .false.)

ggwin%n_real_axis (integer) for calculations with the contour deformation
scheme , the number of points on the real energy axis at which the self-
energy will be calculated (default: 0)

ggwin%real_energy_min (double) defines the range on the real energy axis
for contour deformation calculations, in Ry, (default: -1.d0)

ggwin%real_energy_max (double) defines the range on the real energy axis
for contour deformation calculations, in Ry, (default: 1.d0)

5.2 Parallelization and memory usage

The gww.x code is parallelized on the grid spanning the imaginary energy half-
axis. Therefore it can take advantage of MPI parallelization till a number of
MPI tasks equal to the maximum number of grid points on the imaginary en-
ergy positive axis (usually from 128 to ca. 256-300). When dealing with ma-
chines with a larger number of computing cores it is a good choice to use a
mixed OPENMP/MPI parallelization. This can be achieved simply by enabling
OPENMP parallelism when compiling. See QE manuals.

The gww.x code needs a quite large scratch disk space. Note that each
MPI task writes files only in the default starting directory.Nevertheless it is still
possible to use local scratch disks ( where each MPI task reads/writes on its own
scratch disk unreachable by the others tasks) if: we don’t change the number
of MPI tasks during restarts and we distribute by hand (i.e. just copying the
files) the files q_lanczos* which are created at point 2 to every scratch disk.

The point 3 where the irreducible polarizability matrices are calculates is
usually the most time and memory consuming. In order to lower the memory
usage the code keeps in memory ggwin%n_set_pola occupied KS states at
each time. There is a loop on occupied KS states. For best performance we have
to select the higher value of ggwin%n_set_pola compatible with the memory
available to each MPI task. In order to determine the memory requirement for
each MPI task for a chosen ggwin%n_set_pola , you can use tje memory.f90
program in the extra directory. It will ask: the dimension of the polarizability
basis numpw , the number of Lanczos chain steps nsteps_lanczos_pola,

12



the number of MPI tasks, and the number of global t vectors. This number is
reported in the output file of the pw4gww.x code, see Sec. 4.2.

The point 3 can also be restarted. For this reason the code creates a 2 line
text file named restart_polaw which specifies which part of the polarizability
matrices (files polaw* ) have been already computed. If this file does not exist
or it starts with “-1” the program starts from the beginning. When the point
3 is completed it sets this file to “-1” so we have not to delete it for future
calculations. Note that restating in point 3 requires not to change the number
of MPI tasks. Note that if we want to abort a calculation in point 3 we have to
delete the restart_polaw file.

5.3 Output file

We describe the output file, which is directed on standard output, according
to the points as specified by the parameter ggwin%starting_point and gg-
win%ending_point.

5.3.1 Point 1

• It reports some input parameters

• freq points of the energy grid

• weight the corresponding weight for integration

5.3.2 Point 2

• Routine calculate_compact_pola_lanczos here calculate the q_lanczos*
files

5.3.3 Point 3

• RESTART FROM POINT 3 you can restart from point 3

• Lanczos dimensions Nt Ns we have Nt global t vectors and Ns lanczos
steps

• do_polarization_lanczos1 I the codes is calculating the I-th irre-
ducible polarizability matrix

• do_polarization_lanczos iv I now the ggwin%n_set_pola valence
states starting from I are processed

5.3.4 Point 4

• Call go_dressed_w now calculates the screened Coulomb interaction
(see theory notes)

• Read polaw Np the dimension of the polarizability basis is Np

13



• call calculate_w I the codes is calculating the I-th screened Coulomb
interaction matrix

5.3.5 Point 5

• Transform W to Pgreek now calculates the irreducible polarizability
matrices

5.3.6 Point 6

• RESTART FROM POINT 6 you can restart from point 6

• Lanczos dimensions Ns Nss it reports the number of s vectors Ns and
the number of Lanczos steps for the self-energy Nss

• Fourier transform Pgreek transform the reducible polarizability to
imaginary time

• Loop on KS: I IS now calculates the I KS states of spin IS

5.3.7 Point 7

• Call fit_multipole for each KS states between ggwin%i_min and
ggwin%i_max now fits the expectation values of the self-energy on the
imaginary half-axis with a multipole expansion, first uses a random search

• Calling minpack now uses the minpack library for performing the non-
linear fit

• Chi0 initial: X initial error

• Minpack fit chi0 X final error

• FIT state : I IS now reports the fitted parameters for KS state I of spin
IS

• FIT a_0: X

• FIT a: J for J=1,number of poles a and b parameters

• FIT b: J

• QUASI-PARTICLES ENERGIES IN Ev, Spin: IS quasi-particle
energies for spin IS

• State: I DFT : X1 GW-PERT : X2 GW : X3 HF-pert : X4
for the KS state I: X1 is the DFT energy, X3 is the GW energy, X4 is
the perturbative Hartee-Fock energy (i.e. with DFT orbitals) and X2 is
reported just for comparison with GW codes which solve perturbatively
the final self-consistent one variable equation.All the energies are in eV.

14



• IMAGINARY ENERGIES IN Ev: in the following it reports the
calculated imaginary parts of the GW quasi-particle energies for each KS
state

5.4 Output files

The gww.x code will produce at point 7 some additional output files: the file
bands.dat and for each KS statesXXX in thebetween ggwin%i_min and gg-
win%i_max a couple of files re_on_imXXX and im_on_imXXX. The band.x
file is a list with a row for all the KS states containing:

• I X1 X2 X3 X4 for the KS state I: X1 is the DFT energy, X3 is the
GW energy, X4 is the perturbative Hartee-Fock energy (i.e. with DFT
orbitals) and X2 is reported just for comparison with GW codes which
solve perturbatively the final self-consistent one variable equation.All the
energies are in eV.

The re_on_imXXX and im_on_imXXX files contain the expectation values
of the correlation part of the self-energy operator for the XXX KS-state. The
re_on_imXXX reports the real part and the im_on_imXXX the imaginary
one. The format is:

• E X1 X2 X3 where E is the frequency either on the imaginary or the real
axis, X1 is the fitted self-energy on imaginary frequency (note that only
the positive half-axis has been fitted), X2 is the calculated self-energy on
imaginary frequency, X3 is the fitted self-energy on real frequency. All
quantities are in Ry.

6 head

The head.x program calculates the long range terms of the symmetric dielectric
matrix which are required when calculations for extended systems are performed
(using the option l_truncated_coulomb=.false.). The code uses a Lanczos
chain algorithm for avoiding sums over empty KS orbitals and requires in input
the same grid on imaginary frequency which will be then used in the gww.x
code. The code MUST follow a pw.x ground-state DFT calculation performed
with a k -points mesh. The K_POINTS part of the input must be specified.
The code is very similar to the ph.x one and also the input file is similar.

6.1 Input file

The input file has the form
&inputph
trans=.false.
l_head=.true.
tr2_ph=1.d-4,

15



niter_ph=1
outdir=’./’
.....
/
0.0 0.0 0.0
containing the following parameters:
prefix=(character*) Title of the calculation, must be the same as that used

in pw.x .
omega_gauss= same as omega in gww.x
n_gauss same as n in gww.x
grid_type= same as grid_type in gww.x
second_grid_i= same as second_grid_i in gww.x
second_grid_n=same as second_grid_n in gww.x
nsteps_lanczos=(integer) number of Lanczos steps (suggested value: 30)

6.2 Output file

First the common output of Quantum-Espresso post-processing programs ap-
pears (data of the system, cutoffs, grids).

Freq I X for every I step on the imaginary frequency positive half-axis : X
the frequency

Dielectric constant in cartesian axis reports all the DFT-RPA dielectric
tensors for all the frequencies starting from 0. Ry; note that local-fields effects
are not included.

7 gww_fit.x

The final analytic continuation of the expectation values of the self-energy, which
is achieved through fitting with a multipole expansion, must be checked in order
to determine the accuracy of our calculation. Thus, it is important to investigate
how the GW results change upon changes in the parameters which control the
fits.

The gww_fit.x permits to do this as a post-processing. It requires the
re_on_im_XXX and im_on_im_XXX files relative to the states XXX for
which the fit is desired. It requires also the file bands.dat which is also pro-
duced by the gww.x program and contains the data regarding the energy levels.
Note that the first two lines of this files MUST be removed and replaced with
a single line where it is written the number of valence states. All these files are
simple text files, no other file is required. As the computational load is low, the
gww_fit.x program can be used easily on an ordinary laptop.

The input file of gww_fit.x is the same of gww.x. However, only the following
parameters regarding the fit with a multipole expansion are meaningful:

ggwin%i_min (integer) KS energies will be re-calculated from state i_min to
state i_max

16



ggwin%i_max (integer) KS energies will be re-calculated from state i_min
to state i_max

ggwin%n_multipoles (integer) number of poles for multipole expansion (de-
fault: 2)

ggwin%fit_thres (double) threshold for convergence of minpack non-linear
fit (default: 1d-5)

ggwin%offset_fit (integer) it specifies the number of point on the fit grid
which will be skipped (starting from the origin). (default: 1)

ggwin%n_fit (integer) number of grid points (starting from the origin) to be
used for fitting the multipole expansion

We suggest first to find the most stable parameters for example investigating
how the HOMO and LUMO energies change. Then, the best strategy, is to find
the parameters which give results (e.g. for the HOMO and the LUMO) closer
to those from a calculation with the contour deformation scheme.

8 Important notes on convergence

The choice of appropriate input parameters for the pw4gww.x code can be quite
a difficult task. Indeed, the degree of accuracy can be determined only a posteri-
ori. However, for the same class of systems the most relevant parameters can be
scaled with respect to the dimensions of the structural models. Input parameters
must be given for the selection of: the polarizability basis, for the calculation
of the polarizability matrices, and for the calculation of the self-energy. We see
now in details these three parts:

8.1 Polarizability basis:

the optimal polarizability basis (pmat_type=4) is controlled by the cutoff E∗

(pmat_cutoff) and by the choice of the total basis dimension (numw_prod).
So that the corresponding threshold q∗ can only be determined after the calcu-
lation viewing the output file. numw_prod scales linearly with respect to the
dimensions of the system (e.g. total number of atoms, or total number of elec-
trons). As the optimal polarizability basis is obtained in two steps and in the
first a temporary, larger, basis is derived, we have to check that the dimension
of such a basis is large enough. We have seen that a factor ∼ 4 guarantees con-
vergence. The dimensions of the temporary polarizability basis is determined
by the threshold s_pmat which is almost system independent.

8.2 Polarizability: t vectors

The construction of the basis (t vectors) which is used to calculate the actual
polarizability matrices usually is not critical. The parameter n_pola_lanczos

17



sets the number of local t vectors. As these are obtained from the overlaps of
localized (Wannier’s) functions, such parameter is essentially system indepen-
dent. Then the final global t vectors, are obtained from all the different local
t basis using the threshold s_pola_lanczos. We have verified that a total
number of global t vectors of ∼ 4 times the dimension of the polarizability basis
guarantees convergence. s_pola_lanczos scales linearly with the dimension
of the system. Then for all the global t vectors Lanczos chains are calculated.
The length of such chains is given by nsteps_lanczos_pola. A value of 20
always gave converged results.

8.3 Self-energy: s vectors

Although analogous to the case of polarizability t vectors, the construction of
the basis used for calculating the actual self-energy expectation values which
we refer to as s vectors is more critical. Also in this case we (usually) proceed
in two steps: first we build a local basis of s vectors relative to each single KS
state and then we build a global basis of s vectors. The dimension of the local
basis is determined by the n_self_lanczos parameter. In contrast with the
polarizability case, n_self_lanczos is system dependent as it is relative to
a KS state and not to a Wannier’s function. We observed empirically that a
number in the range 1/4-1/2 the dimension of the polarizability basis guarantees
convergence. The s_self_energy parameter determines the dimension, and
accuracy, of the global s vectors basis. Empirically, we found that a basis of
global s vectors with a dimension of ∼ 4 the number of polarizability basis
vectors gives converged results. Then for all the global s vectors Lanczos chains
are calculated. The length of such chains is given by nsteps_lanczos_self. In
contrast to the polarizability case more Lanczos steps are required in particular
for large systems nsteps_lanczos_self ranges for ∼ 20 in small systems to
∼ 200 in larger ones.

As the assessment of the degree of accuracy can be cumbersome for large
systems, we have implemented an option l_big_system to be selected both in
pw4gww.x and in gww.x which permits to calculate the self-energy expectation
values state by state so that the global s vectors basis coincides with the local
one. In this case the s_self_lanczos parameter is not used. As this strategy
requires more computational time we suggest to use it to evaluate the energies
of the most relevant states (e.g. the closest ones to the Fermi energy). Then the
ordinary strategy can be used for the other states, verifying that the same ener-
gies are calculated for the states previously addressed with the l_big_system
strategy.

References

[1] M.S. Hybertsen and S.G. Louie, Phys. Rev. B 34, 5390 (1986).

[2] P.Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 79, 201104(R) (2009).

18



[3] P.Umari, G. Stenuit, and S. Baroni, Phys. Rev. B 81, 115104 (2010).

[4] P. Umari and S. Fabris, J. Chem. Phys. 136, 174310 (2012).

19


